榮獲巴仁獎的臺灣分子演化學家
您知道中央研究院有位相當低調的遺傳演化學大師嗎?此人開創了許多分子演化的數學分析方法,他就是生物多樣性研究中心的特聘研究員李文雄院士!數學是李文雄用來描述生物演化的工具,用 DNA 序列計算分子時鐘是他的重要貢獻。至今 80 歲高壽的李院士,是國內唯一獲得巴仁獎榮譽的得主,不僅培育眾多學生,並且依然在最前線探索未知。中研院「研之有物」專訪李文雄,邀請他分享在美國與臺灣的學研經歷及主要研究成果。
李文雄院士開創了許多分子演化領域的數學分析方法,對遺傳及演化學的發展影響甚遠。
圖|研之有物
用數學在演化生物學領域開疆拓土
李文雄身為世界首屈一指的分子演化學家,也是經典教科書的作者,學分子演化的人肯定讀過他的書或論文。不過讓年輕學子們驚訝的是他大學就讀的科系,其實和生物及數學沒有直接關係,而是中原理工學院(中原大學前身)土木系。
李文雄表示,當年資訊閉塞,他像同學一樣照著聯考分數填志願,就這麼進了土木系。讀到大二接觸專業科目後,確認土木不是想要念的學門,便考慮投入數學或物理領域,又以數學比較得心應手。可惜他沒有考上數學碩士班,倒是考進了中央大學地球物理研究所。拿到碩士之後,李文雄更加確定比起物理,自己更適合念數學。
早年臺灣的進修資源很有限,李文雄選擇赴美深造,就讀布朗大學的應用數學博士班。當構思論文題目時,他想要找一個還沒有人用數學深入探討的領域,以便發揮所長。那時日本出身的遺傳學家根井正利(Masatoshi Nei)正好轉到布朗大學生物系授業,李文雄與他討論後,決定帶著數學專長投入尚待開拓的生物學,就此開啟 50 年輝煌的研究生涯。
李文雄在博士班前的求學之路,可以說比其他人多走了好幾步,但也練就了深思熟慮的精準眼光,「Make right choice !」是他學到最重要的能力。用數學來探討生物學,即為他一生最好的抉擇之一。
轉換跑道到生物學,李文雄幾乎沒有遇到太多困難,即使他是在博二暑假才開始學遺傳學,但數學好的人在群體遺傳學領域有些優勢,他受到師長賞識,只花費兩年就完成博士論文,再經歷一年威斯康辛大學麥迪遜分校的博士後研究,1973 年李文雄便前往德州大學休斯頓分校擔任助理教授,因為恩師根井正利在一年前已搬去那裏。
李文雄的恩師根井正利,國際知名分子演化學家,2013 年獲得日本京都獎。圖片為日本京都獎專訪片段。(Photo courtesy of The Inamori Foundation)
資料來源|Kyoto Prize
「分子演化」是探討微觀的生物演變
分子演化(molecular evolution)和我們一般認知的演化有什麼不同?生物以 DNA 承載遺傳訊息,基因又會產生蛋白質。分子演化學簡單說來,是以 DNA、蛋白質這類遺傳資訊探討生物隨時間演變的學問。
分子演化學在 1960、1970 年代,木村資生(Kimura Motoo)、威爾森(Allan Wilson)等前輩主要是以蛋白質序列作材料,由於蛋白質定序很慢成本也高,李文雄並沒有跟風投入研究。直到後來桑格(Sanger)的 DNA 定序方法 1977 年問世後,陸續有 DNA 資料發表,李文雄認為時機已到,便全心擁抱分子演化學的新天地,大獲成功,成為引領潮流的先驅者。
李文雄開始研究分子演化時已經有電腦,但當時還是卡片打孔的時代,計算過程相當繁複,不像現在有各種套裝軟體可以做數學統計分析。值得一提的是,今日相當受歡迎的分析軟體「MEGA」(Molecular Evolutionary Genetics Analysis),便是恩師根井正利與弟子們一起開發而成的。
在詳細講分子演化之前,我們還是先來複習一下遺傳學吧!
DNA、DNA 密碼子與氨基酸的對應案例。
圖|研之有物(資料來源|Wikipedia)
基因編碼以三個核苷酸為一組密碼子,並對應一個氨基酸(蛋白質的基本單位)。DNA 有 A、T、C、G 四種核苷酸,可以形成 64 種組合,而氨基酸只有 20 種,所以有些氨基酸對應兩種以上密碼子。
因此改變 DNA 的核苷酸,有時候不會改變氨基酸,此時稱為同義突變(synonymous mutation);有時候會改變氨基酸,此時稱為非同義突變(nonsynonymous mutation)。比較 DNA 序列和胺基酸序列變與不變之比例,就能大約估計天擇力量的影響,推測天擇是傾向去除突變還是選擇突變。這是分子演化常見的分析之一,李文雄的實驗室開發了數個被廣泛應用的分析方法。
在分子演化興起前,不同生物間的親疏關係,可以透過生物形態的相似程度建構演化樹,但形態資料很有限。比較生物 DNA 或蛋白質的資料,可以細緻地釐清物種間的親緣關係,對分類學的貢獻很大。
比方說早期演化學家會比較一群鳥類的嘴喙特徵,兩種鳥喙的形態差異較小,便代表其親緣關係較近;而分子演化學家則是比較這群鳥類的 DNA 或蛋白質序列的差異,更能釐清彼此的親緣關係。
形態是巨觀的,分子是微觀的。但我們也可以說每一處 DNA 或氨基酸位置都相當於一種形態。分子資料通常更容易取得,可提供比較的特徵數量也比形態還多很多,更容易計算。
現今探討親緣關係,最好能考慮不同材料,有多重證據的支持,因此分子演化的分析方法就相當重要。李文雄在親緣樹建構及統計評估的方法上有重要貢獻。
李文雄回憶,他的好朋友古德曼(Morris Goodman)當初便靠著分子生物學的方法,釐清人類和黑猩猩(chimpanzee)的遺傳親緣關係,要比和大猩猩(gorilla)更近,解決了爭議了數十年的「大猩猩—黑猩猩—人類的三角問題」,是一大貢獻。
大師傳承的軌跡:中性演化和分子時鐘
今日分子演化之所以和 50 年前有很大差別,其中就有來自李文雄的重要貢獻。李文雄建立了數學方法讓「分子時鐘」(molecular clock)理論得以實際應用至生物演化的分析。
分子時鐘的概念是:DNA(或蛋白質)序列的演化以等速進行。如果這個假設成立,則透過兩個物種之間 DNA 序列的差異,就可以估計分化的時間。也就是以分子的變化量為時鐘來計算這兩個物種分離後時間的流逝。
之所以可以這樣假設的基礎,是生物在一代代傳承下,由於突變之故,遺傳序列不斷累積新的變化,稱為「取代」(substitution);而取代的數量正比於世代數,例如每一代新增 5 處取代,差異 50 處便可回推經過 10 代。
分子時鐘的示意圖,DNA 序列的變化量正比於世代數。假設每條 DNA 序列花費 2500 年取代一個鹼基,圖中兩個現代物種的 DNA 相差四個鹼基,我們可以估計這兩個物種的演化時間相差一萬年,而共同祖先至少生活於 5000 年前。
圖|研之有物(資料來源|University of California Museum of Paleontology)
然而,這假設與傳統達爾文的天擇概念有很大的出入;因為分子時鐘這樣假設的意思就是說:大部分突變不會影響天擇,對生存競爭的影響可謂中性(neutral)。上述觀點也就是根井正利和李文雄的前輩:木村資生提出的「中性演化理論」。
木村資生認為,大多數遺傳分子的改變未必和天擇有關,個體間的遺傳多樣性往往是隨機變化的結果。當初這個論點引發很大爭議,後來又經過許多改版與補充,如今中性演化的觀點已被許多學者接受,分子層次的遺傳變異,常常不影響其天擇;新突變取代舊的遺傳訊息,未必是因為其有利於生存競爭,也常常只是運氣好而已。
中性演化理論提供了分子時鐘的理論基礎,帶來許多突破。例如受到注目的智人(Homo sapiens)起源問題,於 1980 年代根據各地人群間的遺傳差異程度,判斷歐亞人與非洲人分家只有數萬年,而非多地智人起源論主張的上百萬年,這便是「單地起源,智人出非洲說」的有力證據。
李文雄自己在 2000 年代初期也指導博士生陳豐奇(現職為臺灣國家衛生研究院的研究員),比較人類與人猿非編碼區的 DNA 序列,便估計出人類與黑猩猩分家約 600-700 萬年。
李文雄院士證明分子時鐘的運行速度和世代長短有關,世代愈短,演化速度愈快。
圖|研之有物
李文雄在 1980 年代的一關鍵貢獻就是,率先用 DNA 序列評估分子時鐘的正確性,發現取代的速度並非等速。他證明分子時鐘運行的速度和世代長短有關:世代愈短,時鐘愈快。例如大鼠、小鼠的世代比人類的世代短得多,而牠們之間演化的速度,也是人類與人猿間的大約 5 倍。此一發現有助於更準確地估計兩個物種間的分家時間。
李文雄另一重大發現是,同一物種的兩性之間,生殖細胞的突變速度可能不一樣,男比女快。這在生物學上的理由是:生殖細胞的複製及分裂次數不同。女生的卵在出生前便已儲備好了,而男生的精子則是一輩子持續複製,所以男生生殖細胞的突變速率比女生快。
關於同一物種的性別演化差異,李文雄表示這是前輩霍爾丹(J. B. S. Haldane)提出的觀點。李文雄設計好 DNA 定序區間及物種,產生適合材料,於是就驗證了此假說。雖然講起來雲淡風輕,但若讀者了解遺傳學發展史應該會深受震撼,因為霍爾丹正是奠定族群遺傳學的三大名家之一,從霍爾丹到李文雄,我們可以看見大師傳承的軌跡。
遺傳與演化學最高榮譽:巴仁獎
靠著數學和分子生物學的分析,李文雄解決了許多演化生物學的難題。比如,他在 1991 年就以很有限的人類 DNA 序列資料,預估人類的 DNA 多樣性低於 0.1%,比果蠅的低不少,十年後大量的資料證明他的預估是正確的!還有,在 2001 年當黑猩猩的基因體資料還很有限時,他就預估出人類與黑猩猩的基因體相差只有 1.2%,這個預估引起很大的震撼,因為人類與黑猩猩看起來很不一樣,但當黑猩猩的基因體於 2005 年發表時,得到的答案與李文雄的預估完全一樣!
承上,李文雄陸續受到各界肯定,他於 1998 年被挖角到芝加哥大學擔任 George Beadle 講座教授(Beadle 為一位諾貝爾獎得主),並當選中研院院士。2003 年更獲得兩項重大榮譽:美國國家科學院院士和巴仁獎(Balzan Prize for Genetics and Evolution)。
要成為美國國家科學院的院士並不容易,對學者而言是極大的榮譽。例如:以中研院為例,最近的三任院長廖俊智、翁啟惠、李遠哲;以及超導物理學家吳茂昆、公衛學家陳建仁、經濟學家朱敬一、植物學家蔡宜芳等,每一位都是該領域世界級科學家。
獲頒巴仁獎則更為難得,李文雄是史上第三位得獎的遺傳與演化學家,也是第一位亞洲出身的巴仁獎得主。巴仁獎從 1978 年以來獎勵人文、哲學、物理科學、生物科學,或促進和平的傑出人士或組織。對演化學家來說,巴仁獎就是遺傳與演化學的最高榮譽。
李文雄在 2003 年獲得遺傳與演化學最高榮譽:巴仁獎。(Courtesy of The Balzan Prize)
圖|李文雄
李文雄獲得巴仁獎時的引文如下:
「李文雄對分子演化做出了許多基礎性的貢獻。他開發並應用了數學技術來解決非常廣泛的問題,他的方法是屬於該領域最常用的方法。
隨著 1980 年代以來 DNA 序列數據的爆炸式增長,李文雄一直是通過比較 DNA 序列來推斷演化關係的方法的設計師。他在建立估計演化樹的準確程度和可以放在其中的統計置信度的方法方面特別有影響力。
以往解釋 DNA 數據的一個關鍵假設是 DNA序列的變化在演化時間上以恆定速率進行(所謂的分子時鐘)。該假設常被用於估算譜系分歧的時間。1980 年代,李文雄第一個證明分子時鐘的運行速度取決於世代的長短:世代越短,時鐘越快。因此,時鐘在大鼠和小鼠之間的演化速度是猴子和人類之間的演化速度的五倍。這一發現有助於更好地估計兩物種的分歧時間。
李文雄在證明 DNA的突變率在男性生殖細胞高於女性生殖細胞的工作也很有影響力。他已經在包括人類在內的高等靈長類動物以及囓齒動物證明了這一點。
隨著人類基因體計劃數據的出現,李文雄和他的同事們將注意力轉向了人類基因體詳細結構的分析,包括檢測嵌入編碼區域的非功能性 DNA。
除了開創性研究外,李文雄還在分子演化領域的教育上 扮演一核心人物。他的書被認為是該領域的權威。」
在獲得巴仁獎的遺傳及演化學家之中,第一位為 1984 年得獎的萊特(Sewall Wright,美國人),與前述提及的霍爾丹,同為族群遺傳學三大開創者之一;第二位則是 1991 年英國的梅納德史密斯(John Maynard Smith),再來就是 2003 年的李文雄。生物科學包含那麼多領域,遺傳及演化大約十年才得獎一次,讓李文雄覺得這項肯定十分難得。
李文雄的成就受到芝加哥大學的肯定,在 2004 年為他設立 James Watson 講座教授(Watson 以雙螺旋 DNA 模型得諾貝爾獎,是一家喻戶曉的名字),並提供研究資源。然而,過了四年之後,李文雄決定回到臺灣,提攜後進。
回歸起點臺灣,培育後進
2008 年,李文雄終於回到這塊多年成長的土地,擔任中研院生物多樣性研究中心的主任。除了自己的研究外,他特別重視兩件事:首先是和臺灣師範大學合辦「生物多樣性國際研究生博士學位學程」,在臺灣本土培育新生代的研究人員。
再來他號召成立「臺灣演化與計算生物學會」,成立的初衷是因為李文雄覺得臺灣研究演化的人不多,希望讓演化、生物資訊領域的人集中起來交流,尤其是讓年輕的研究者有練習發表的舞台,增加被認識的機會。擔任兩屆理事長後,李文雄交棒給臺灣大學的丁照棣教授,以及陽明交通大學的黃宣誠教授。
學會在李文雄奠定的基礎上持續前進,2012 年開始年年舉辦國際研討會,除了邀請外國學者參加,也會特別安排新進學者演講的場次,至於博士生、博士後,則設有專屬的口說與壁報比賽。另外為了兼善臺灣各地,年會舉辦的地點一年在臺北,另一年在臺北以外輪流,包括高雄、臺南、臺中、苗栗等地,展現兼顧不同區域的用心。
李文雄也鼓勵大家,多參加不同的研討會與加入學會。獲取新知對做研究的人相當重要,參加活動多看多聽多交流,都是寶貴的機會,不只能增加知識,有時候也能獲得他人幫助,有助於自己的研究。
回到臺灣以後,李文雄除了指導學生,本人依然站在研究的第一線,而且兼顧學術與應用的方向,合作對象眾多,議題包括鳥類羽毛的發育演化、微生物固氮作用的起源與演化,還有開發 C4 水稻(水稻是 C3 植物,希望能改造為光合效率更好的 C4 型態)等等。
近期值得一提的是,李文雄與合作團隊發表在分子演化頂級期刊《Molecular Biology and Evolution》的研究。他們探討新冠病毒棘蛋白(spike protein)的受體蛋白 ACE2 的演化,發現一些非人類的靈長類動物,有大量降低親和力的 ACE2 突變,讓這些猴子的 ACE2 不容易和病毒的棘蛋白結合,因此對病毒有很強的抵抗力。又發現有少數人的 ACE2 也帶有會抵抗病毒的突變。李文雄也說,如果人類與舊世界猴子的共同祖先的 ACE2 沒有突變成與棘蛋白更容易結合的話,也許新冠病毒就不會造成全球大流行,或是病毒的危害不至於那麼廣、那麼深!
李文雄與合作團隊分析了靈長類動物的 ACE2 的演化,ACE2 是新冠病毒感染宿主的結合受器。研究顯示,左側的舊世界猴子(獼猴、大猩猩、長尾猴)和人類一樣容易感染新冠病毒,右側的眼鏡猴與兩種新世界猴子(松鼠猴、金絨猴)則對新冠病毒具有很強的抵抗力。
圖|研之有物(資料來源|中研院生多中心)
自我定位,尋找新鮮的問題
李文雄入行 50 餘年一直活躍在第一線,作為參與者和見證人,最有資格回答「分子演化學在過去和現在有什麼不同?」。他表示,以前容易找到重要的題目,但是取得資料的速度很慢。現在隨著分子生物學及資訊科學技術的進步,比較容易取得大量資料,資料多就容易找到題目,寫論文不難,內容也會比較豐富。可是期刊的要求也變高,而且比較不容易找到新鮮的議題,如今剩下的題目,多半是舊題目的延伸,或是難度很高。還好,現在科技發展迅速,目前的難題也許在不久的將來,就可以解決!
李文雄還是如年輕時一般,善於尋覓突破機會。像是微生物的固氮作用,無疑是重要的問題,氮是所有生物的必要元素,但只有非常少數的微生物可以固氮!可是從前卻少有演化學者研究這個問題,這就會成為好的題材。
另一方面隨著技術進步,以前難如登天的問題,現在也可能有機會解答。上面提到人類與黑猩猩的 DNA 分歧只有 1.2%,但兩者間的差異除了非編碼區外,也有很多來自基因調控不同的區域,尤其是腦部發育。過去這幾乎是不可能探索的議題,如今難度雖大,卻是有希望解決的難題。總之,在李文雄的視角中,一直都有新鮮的問題。
科學隨著歲月累積,現在入行的新人,必須先具備的知識遠超過李文雄當年,必須勇於追求「跨領域」研究。李文雄建議大家,不論時代如何改變,都要確認自己的喜好與專長,才能有計劃地學習和投入。李文雄以自己為例,他不會做實驗,但為了解決他很感興趣的生物問題,他設立一分子生物學實驗室,拿到了很多實驗資料,進而解決了不少演化難題!
讓演化大師印象最深刻的研究是?
演化生物學時常有驚奇的新發現。身為世界級的演化大師,李文雄漫長的研究生涯中,對哪件科學發現的印象最深刻呢?
答案十分有趣,竟然是「河馬是鯨魚和海豚最親近的親戚」!
鯨魚、海豚是由陸地回到海洋生活的哺乳類,很難想像牠們在演化樹上的位置很相近。然而,透過 DNA 分子的比對,演化學者發現在現存動物中,鯨豚最接近偶蹄目的河馬。
鯨豚與偶蹄類的親緣關係,偶蹄類動物中的河馬和鯨豚最為相近。
圖|研之有物(資料來源|Systematic Biology、Wikipedia)
此外,李文雄認為黑猩猩與人類的差異也相當有趣!威爾森(Allan Wilson)在 1970 年代發現黑猩猩與人類的蛋白序列幾乎相同,雖然它們在外觀與行為上有很大的不同,所以威爾森認為基因調控的演化是造成黑猩猩與人類有不同外觀和行為的主要原因,但到底是哪些基因調控上的不同,至今還是個謎!
最後,李文雄對非洲維多利亞湖(Lake Victoria)慈鯛魚(cichlids)的大量種化現象,也感到非常的奧妙,為什麼在同一個湖泊裡可以演化出這麼多慈鯛魚物種呢?!
投身科學研究 50 多年,取得一項又一項重大成果,李文雄依然由衷保持對新知識的好奇與樂趣。
採訪撰文|寒波
責任編輯|簡克志
美術設計|蔡宛潔
本文經授權轉載自研之有物 用數學看見微觀的生物演變!分子演化 50 年的活歷史—李文雄專訪